Multiple mapping method: a novel approach to the sequence-to-structure alignment problem in comparative protein structure modeling.
نویسندگان
چکیده
A major bottleneck in comparative protein structure modeling is the quality of input alignment between the target sequence and the template structure. A number of alignment methods are available, but none of these techniques produce consistently good solutions for all cases. Alignments produced by alternative methods may be superior in certain segments but inferior in others when compared to each other; therefore, an accurate solution often requires an optimal combination of them. To address this problem, we have developed a new approach, Multiple Mapping Method (MMM). The algorithm first identifies the alternatively aligned regions from a set of input alignments. These alternatively aligned segments are scored using a composite scoring function, which determines their fitness within the structural environment of the template. The best scoring regions from a set of alternative segments are combined with the core part of the alignments to produce the final MMM alignment. The algorithm was tested on a dataset of 1400 protein pairs using 11 combinations of two to four alignment methods. In all cases MMM showed statistically significant improvement by reducing alignment errors in the range of 3 to 17%. MMM also compared favorably over two alignment meta-servers. The algorithm is computationally efficient; therefore, it is a suitable tool for genome scale modeling studies.
منابع مشابه
Comparative protein structure modeling by combining multiple templates and optimizing sequence-to-structure alignments
MOTIVATION Two major bottlenecks in advancing comparative protein structure modeling are the efficient combination of multiple template structures and the generation of a correct input target-template alignment. RESULTS A novel method, Multiple Mapping Method with Multiple Templates (M4T) is introduced that implements an algorithm to automatically select and combine Multiple Template structur...
متن کاملIn Silico Analysis of Primary Sequence and Tertiary Structure of Lepidium Draba Peroxidase
Peroxidase enzymes are vastly applicable in industry and diagnosiss. Recently, we introduced a new kind of peroxidase gene from Lepidium draba (LDP). According to protein multiple sequence alignment results, LDP had 93% similarity and 88.96% identity with horseradish peroxidase C1A (HRP C1A). In the current study we employed in silico tools to determine, to which group of peroxidase enzymes LDP...
متن کاملMMM: a sequence-to-structure alignment protocol
MOTIVATION Accurate alignment of a target sequence to a template structure continues to be a bottleneck in producing good quality comparative protein structure models. RESULTS Multiple Mapping Method (MMM) is a comparative protein structure modeling server with an emphasis on a novel alignment optimization protocol. MMM takes inputs from five profile-to-profile based alignment methods. The al...
متن کاملM4T: a comparative protein structure modeling server
Multiple Mapping Method with Multiple Templates (M4T) (http://www.fiserlab.org/servers/m4t) is a fully automated comparative protein structure modeling server. The novelty of M4T resides in two of its major modules, Multiple Templates (MT) and Multiple Mapping Method (MMM). The MT module of M4T selects and optimally combines the sequences of multiple template structures through an iterative clu...
متن کاملA NOVEL FUZZY MULTI-OBJECTIVE ENHANCED TIME EVOLUTIONARY OPTIMIZATION FOR SPACE STRUCTURES
This research presents a novel design approach to achieve an optimal structure established upon multiple objective functions by simultaneous utilization of the Enhanced Time Evolutionary Optimization method and Fuzzy Logic (FLETEO). For this purpose, at first, modeling of the structure design problem in this space is performed using fuzzy logic concepts. Thus, a new problem creates with functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proteins
دوره 63 3 شماره
صفحات -
تاریخ انتشار 2006